

Rusfertide 2025 Post-Congress Reactive Deck

VV-MEDMAT-122737 | June 2025 Global/US Medical

Disclaimers

- Diese Folien wurden zur reaktiven Nutzung durch das Medical-Team im wissenschaftlichen Austausch mit HCPs erstellt, als Antwort auf nicht angeforderte Informationsanfragen zu den hierin enthaltenen Themen.
- Antworten müssen gezielt auf die nicht angeforderte Anfrage zugeschnitten sein und den entsprechenden Kontext vollständig enthalten.
- Das Medical-Team sollte seine professionelle Einschätzung nutzen, um passende Folien in einer Reihenfolge zu präsentieren, die am besten dazu geeignet ist, die nicht angeforderte Anfrage gezielt zu beantworten.
- Die Verwendung dieser Folien muss im Einklang mit allen geltenden lokalen Gesetzen und Vorschriften erfolgen; alle LOCs müssen dieses Deck lokal für den reaktiven Gebrauch genehmigt haben, um es extern verwenden zu können.
- Dieses Deck darf nicht vom Vertrieb oder für Vertriebs-Training verwendet werden.
- Rusfertide (TAK-121) ist für die hier beschriebenen Anwendungen nicht zugelassen und eine Zulassung dafür ist derzeit ungewiss.

Company-Sponsored Research

Results From VERIFY, a Phase 3, Double-Blind, Placebo-Controlled Study of Rusfertide for Treatment of Polycythemia Vera (PV)

Company-Sponsored Research

Results From VERIFY, a Phase 3, Double-Blind, Placebo-Controlled Study of Rusfertide for Treatment of Polycythemia Vera (PV)

Andrew T. Kuykendall¹, Naveen Pemmaraju², Kristen Pettit³, Joseph Shatzel⁴, Alessandro Lucchesi⁵, Valentín García-Guitérrez⁶, Jiri Mayer⁷, Abdulraheem Yacoub⁸, Harinder Gill⁹, Antonin Hlusi¹⁰, Daniel Sasca¹¹, Joseph M. Scandura¹², Marina Kremyanskaya¹³, Phil Dinh¹⁴, Sarita Khanna¹⁴, Suneel Gupta¹⁴, Arturo Molina¹⁴, Aniket Bankar¹⁵ on behalf of the VERIFY Investigators

¹Moffitt Cancer Center, Tampa, FL, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³University of Michigan, Ann Arbor, MI, USA; ⁴Oregon Health & Science University, Portland, Oregon, USA; ⁵IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy; ⁶Hospital Universitario Instituto Ramón y Cajal de Investigación Sanitaria, Universidad de Alcalá, Madrid, Spain; ⁷University Hospital and Masaryk University, Brno, Czech Republic; ⁸University of Kansas Cancer Center, Westwood, Kansas, USA; ⁹Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong; ¹⁰Palacky University and University Hospital Olomouc, Olomouc, Czech Republic; ¹¹Universitaetsmedizin der Johannes Gutenberg - Universitaet Mainz, Mainz, Germany; ¹²New York Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA; ¹³Mount Sinai Medical Center, New York, NY, USA; ¹⁴Protagonist Therapeutics, Inc., Newark, California, USA; ¹⁵Princess Margaret Cancer Centre, Toronto, ON, Canada.

Authors' Conclusions

1

Phase 3 VERIFY study compared the hepcidin mimetic rusfertide to placebo (each added to current standard-of-care) in patients with polycythemia vera

2

Rusfertide met its
primary endpoint, all key
secondary endpoints,
and had a manageable
safety profile consistent
with prior studies

3

Rusfertide led to statistically significant improvements in several patient reported outcome measures

Background

- Polycythemia vera (PV) is a myeloproliferative neoplasm driven by acquired JAK2 mutations¹⁻³
- PV is characterized by excessive production of blood cells which contributes to an increased risk of cardiovascular and thrombotic events²
- Primary goal of PV treatment aims to reduce thrombotic risk by achieving and maintaining Hct <45%^{2,3}
- Current standard-of-care for PV: phlebotomy ± cytoreductive therapy³
- Frequent phlebotomy is burdensome and often insufficient for durable Hct control <45%⁴⁻⁶

Polycythemia Vera and the Role of Iron and Hepcidin in Red Blood Cell Production

Rusfertide in Polycythemia Vera (PV)

- Rusfertide is a first-in-class subcutaneous peptide mimetic of the endogenous hormone hepcidin, the principal regulator of iron homeostasis¹
- In the phase 2 REVIVE study (NCT04057040), rusfertide met the primary endpoint for response (i.e., HCT control and absence of PHL eligibility) in patients with PV¹
- VERIFY (NCT05210790) is a global, ongoing phase 3 study designed to confirm the benefit of adding rusfertide to current standard-of-care (CSC) therapy vs placebo with CSC in patients with PV who require frequent phlebotomies²

Phase 3 VERIFY Study (NCT05210790) Design in PV¹

^{*}Phlebotomy ± cytroreductive therapy

CSC, current standard of care; **PV**, polycythemia vera

^{1.} A Phase 3 Study of the Hepcidin Mimetic Rusfertide (PTG-300) in Patients with Polycythemia Vera. Protocol Number: PTG-300-11. Protocol Amendment 5.1 dated 09 January 2025

Phase 3 VERIFY Study (NCT05210790) in PV¹: Prespecified Primary

and Key Secondary Endpoints

Rusfertide with CSC vs. placebo with CSC:

- Primary Endpoint (US FDA): Weeks 20-32
 - Clinical response (absence of phlebotomy eligibility, i.e., confirmed HCT ≥45% and ≥3% higher than baseline HCT OR HCT ≥48%)
- **Key Secondary Endpoints**: Weeks 0-32
 - Mean number of phlebotomies (EU EMA)
 - Proportion of patients with HCT <45%
 - Mean change from baseline in PROMIS Fatigue SF-8a Total T-Score
 - Mean change from baseline in MFSAF TSS7

CSC, current standard of care; **EMA**, European Medicines Agency; **EU**, European Union; **FDA**, Food and Drug Administration; Hct, hematocrit; **MFSAF TSS**, Myelofibrosis Symptom Assessment Form version 4.0 Total Symptom Score; **PROMIS**, Patient-Reported Outcomes Measurement Information System; **SF**, short form.

^{1.} A Phase 3 Study of the Hepcidin Mimetic Rusfertide (PTG-300) in Patients with Polycythemia Vera. Protocol Number: PTG-300-11. Protocol Amendment 5.1 dated 09 January 2025

VERIFY Patient Disposition and Analysis Sets: Part 1a¹

Data cutoff: 7 January 2025

FAS, all randomized patients according to the treatment assigned at randomization (ITT principle) who received at least one dose of study drug and had a baseline and at least one postbaseline assessment in Part 1a.

CSC, current standard of care

1. A Phase 3 Study of the Hepcidin Mimetic Rusfertide (PTG-300) in Patients with Polycythemia Vera. Protocol Number: PTG-300-11. Protocol Amendment 5.1 dated 09 January 2025

Baseline Demographics and Disease Characteristics

	Placebo + CSC (n=146)	Rusfertide + CSC (n=147)	Total (N=293)
Age, years, median (range)	57 (27-82)	58 (28-86)	57 (27-86)
Gender, n (%)			
Male	108 (74.0)	106 (72.1)	214 (73.0)
Female	38 (26.0)	41 (27.9)	79 (27.0)
Risk Category, n (%)			
High risk (age ≥60 years old and/or prior TE)	70 (47.9)	66 (44.9)	136 (46.4)
Disease Characteristics			
Age at PV diagnosis (years), median (range)	51 (22-81)	53 (17-84)	52 (17-84)
PV duration (years), median (range)	3 (0.2-29.2)	2.8 (0.2-26.4)	2.9 (0.2-29.2)
Phlebotomy History – 28 Weeks Prior to Study Treatment			
Number of TPs, mean ± SD	4.1 ± 1.4	4.2 ± 1.6	4.2 ± 1.5
Patients requiring ≥7 TPs, n (%)	7 (4.8)	16 (10.9)	23 (7.8)

Data cutoff: 7 January 2025

CSC, current standard of care; **PV**, polycythemia vera; **SD**, standard deviation; **TE**, thromboembolic event; **TP**, therapeutic phlebotomy. Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Concurrent Cytoreductive Therapy During Part 1a

n (%)	Placebo + CSC (n=146)	Rusfertide + CSC (n=147)	Total (N=293)
Patients With Concurrent Cytoreductive Medication	81 (55.5)	83 (56.5)	164 (56.0)
Hydroxyurea	57 (39.0)	58 (39.5)	115 (39.2)
Interferons			
Interferon, peginterferon alpha-2a, or ropeginterferon alfa-2b	20 (13.7)	19 (12.9)	39 (13.3)
JAK Inhibitors			
Ruxolitinib	3 (2.1)	5 (3.4)	8 (2.7)

Data cutoff: 7 January 2025 CSC, current standard of care; JAK, Janus Kinase Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

VERIFY Study Met Its Primary Endpoint During Weeks 20-32 (Part 1a) Takedo

Data cutoff: 7 January 2025

^aResponder = absence of phlebotomy eligibility (confirmed HCT ≥45% and ≥3% higher than baseline HCT OR HCT ≥48%), no phlebotomies, and completion of Part 1a; *p-value based on Cochran-Mantel-Haenszel test.

CSC, current standard of care; HCT, hematocrit.

Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Rusfertide + CSC Benefit Maintained vs. Placebo + CSC for Response* Across Subgroups, Including Risk Status and Concurrent Therapy

Data cutoff: 7 January 2025 | *Common risk difference for primary endpoint of response. CRT, cytoreductive therapy; CSC, current standard of care; ITT, intent to treat Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Rusfertide + CSC Reduced the Mean Number of Phlebotomies (PHL)

From Weeks 0-32 vs Placebo + CSC (p<0.0001): Key Secondary Endpoint #1

Number of Phlebotomies	Placebo (n=146)	Rusfertide (n=147)
Mean (SD)	1.8 (1.5)	0.5 (1.2)
p-value*	<0.0001	

Rusfertide reduced the mean number of PHL (Weeks 0-32) vs. placebo by a statistically significant margin across subgroups, including PV risk category, geographic region, and use of concurrent CRT

Data cutoff: 7 January 2025 | *p-value associated with the LS mean difference.

CRT, cytoreductive therapy; CSC, current standard of care; LS, least-squares; PHL, phlebotomy; SD, standard deviation.

Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Rusfertide + CSC More Likely to Maintain HCT <45% From Weeks 0-32 Taked

vs Placebo + CSC: Key Secondary Endpoint #2

Data cutoff: 7 January 2025 | ^aHCT <45% from baseline through Week 32 (a single HCT ≥45% was allowed, excluding intercurrent events classified as non-responders); *Cochran-Mantel-Haenszel test.

CSC, current standard of care; HCT, hematocrit

Rusfertide Demonstrated an Improvement in the PROMIS Fatigue

SF-8a Total T-Score at Week 32 vs. Placebo: Key Secondary Endpoint #3

Data cutoff: 7 January 2025

^{*}LS mean (SE) difference (rusfertide – placebo); **p-value associated with the LS mean difference LS, least-squares; PROMIS, Patient-Reported Outcomes Measurement Information System; SF, short form Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Rusfertide Demonstrated an Improvement in the MFSAF TSS7 at Week 32 vs. Placebo: Key Secondary Endpoint #4

Data cutoff: 7 January 2025

^{*}LS mean (SE) difference (rusfertide – placebo); **p-value associated with the LS mean difference LS, least-squares; MFSAF TSS7, Myelofibrosis Symptom Assessment Form version 4.0 Total Symptom Score-7 item Kuykendall AT, et al. ASCO 2025 [Abstract LBA3]; see the abstract

Exposure and Treatment-Emergent Adverse Events (Part 1a)*

- Median treatment exposure was 32 weeks in both groups
 - Median (min, max) dose was 30 (10, 90) mg in the rusfertide group
- The most common TEAEs in the rusfertide group included localized injection site reactions and anemia
- Discontinuation rates due to TEAEs were 2.7% (placebo) and 5.5% (rusfertide)

Most Frequent TEAEs (≥5% in either group) in Part 1a, n (%)	Placebo + CSC (n=146)	Rusfertide + CSC (n=145)
Patients with at least 1 TEAE	126 (86.3)	129 (89)
Injection site reactions ^a	48 (32.9)	81 (55.9)
Anemia	6 (4.1)	23 (15.9)
Fatigue	23 (15.8)	22 (15.2)
Headache	17 (11.6)	15 (10.3)
COVID-19	16 (11.0)	14 (9.7)
Pruritus	14 (9.6)	14 (9.7)
Diarrhea	8 (5.5)	12 (8.3)
Dizziness	9 (6.2)	12 (8.3)
Arthralgia	12 (8.2)	11 (7.6)
Constipation	11 (7.5)	11 (7.6)
Abdominal distension	8 (5.5)	10 (6.9)
Thrombocytosis	0 (0)	10 (6.9)

^{*}Safety analysis set

Cancer Events and Serious TEAEs (Part 1a)*

- 10 skin malignancies (including 1 melanoma) detected prior to randomization
- During Part 1a, non-PV cancer events were reported in 8 patients
- Serious AEs occurred in 3.4% (rusfertide) and 4.8% (placebo) of patients (none related to rusfertide)
- There was 1 TE (acute MI; occurred ~2 weeks after treatment initiation) reported in the rusfertide group and 0 in the placebo group

AE, adverse event; CSC, current standard of care; MI, myocardial infarction; PV, polycythemia vera; TE, thromboembolic event; TEAE, treatment-emergent adverse event

Cancer Events	Placebo + CSC (n=146)	Rusfertide + CSC (n=145)
Patients with ≥1 Cancer Event, n (%)	7 (4.8)	1 (0.7)
Basal cell carcinoma	3 (2.1)	0
Squamous cell carcinoma	1 (0.7)	1 (0.7)
Malignant melanoma	1 (0.7)	0
Colorectal cancer	1 (0.7)	0
Prostate cancer	1 (0.7)	0

^{*}Safety analysis set

tations

- Heterogeneous patient population that may make interpretability of some of the secondary endpoints (e.g., PROs) challenging
- The placebo-controlled portion of VERIFY (Part 1a) was only 32 weeks long¹
 - Long-term assessment of safety, thrombotic events, and disease transformation or progression is therefore limited and will continue for up to three years (Parts 1b and 2)

Conclusions

- Rusfertide is an investigational weekly subcutaneous injection for PV
- In the phase 3 VERIFY study that included patients with PV who were receiving CSC, rusfertide met its primary endpoint and all four key secondary endpoints vs. placebo
 - In VERIFY Part 1a, rusfertide:
 - Significantly reduced the PHL eligibility and improved HCT vs. placebo
 - Demonstrated a statistically significant improvement in symptoms (assessed using two PRO instruments)
- Rusfertide demonstrated a manageable safety profile consistent with prior studies
- Rusfertide represents a potential new treatment option for PV
 - These data will be used to file marketing authorizations throughout the world

© 2025 Takeda Pharmaceutical Company Limited. All rights reserved